STATE OF THE PUMP INDUSTRY 2005

plus . . .
Powder coatings vs. cavitation erosion
Oyster research project relies on its VFDs
Adjusting to new pigment pumps . . . and more
Tackling Cavitation Erosion With Polyamide-11 Powder Coatings

T. Page McAndrew, Ph.D. and Jerry Petersheim, Arkema Inc., and Marc Audenaert, Ph.D. and Danny C.S. Foong, Arkema S.A.

For some end users, products that help extend equipment life and allow the use of lower-cost materials can be a dream-come-true.

Polyamide-11 powder coatings have been offering excellent resistance to corrosion, abrasion/impact, treatment chemicals and cleaning solutions (acidic/basic) and UV degradation for some time. In a recent discovery, however, they also have been shown to offer excellent resistance to cavitation erosion to a degree exceeding that of other coatings and stainless steel. These are important findings, especially for the water industry, where cavitation erosion is a major problem.

For example, the Water Supply Department of Hong Kong has identified cavitation erosion as the main cause of premature failure of pumps in its municipal water system. Recent work compared the cavitation erosion of metals employed in Hong Kong (cast iron, bronze, brass, copper, and stainless steel) and found stainless steel to be the best choice, by far, to address these premature failures. Yet, while stainless steel often can be a good technical solution, its high cost can make it a rather impractical choice.

Hong Kong’s dilemma is not unique. Cavitation erosion poses problems for pumping systems the world over. Cavitation occurs when low-pressure regions form in water moving at high velocity. In these regions, water vaporizes to form bubbles. When the bubbles move to high-pressure regions, they collapse, generating shock waves that erode nearby surfaces. This process is known as cavitation erosion, and it commonly causes premature failure of hydraulic equipment, e.g., pumps, valves, pipes, turbines, and propellers.

A protective coating that resists cavitation erosion can offer significant benefits to end users. Besides helping to extend equipment service life, it can allow the use of lower-cost metals as materials of construction. Polyamide-11 powder coatings are such a coating.

Water Industry History

Polyamide-11 powder coatings have a long history of use in the water industry (see Figure 1). Consider some examples:

- **Water treatment station**
 The carbon steel pipes of the water treatment station of the city of Halle (Germany) have a Polyamide-11 powder coating both on the inside and the outside. For 13 years, this station has processed 1.5 million gallons/hour. In addition to resistance to corrosion and abrasion/impact, the specific benefit of Polyamide-11 powder coating in this operation is its resistance to treatment chemicals (oxygen, ozone, chlorine, flocculants).

- **Portable water purification equipment**
 Infilco-Degremont, of Richmond, VA, manufactures portable water purification equipment. Factory-assembled equipment is installed where needed (the number of units commensurate with volume). Carbon steel pipes are protected inside and outside with a Polyamide-11 powder coating. These coated pipes give better overall performance than stainless steel or fiber-reinforced plastics. Currently, such equipment is serving the cities of Moscow (Russia) and Rouen (France).
Application

Polyamide-11 powder coatings are applied by ordinary methods—electrostatic spray, fluidized bed and thermal spray. As thermoplastics, they can be melted and cooled successively, which makes for easy application and repair. This contrasts with thermosets, like fusion-bonded epoxies, that can be melted/cooled only once.

Polyamide polymers often are called nylon polymers. Among the myriad of them developed since the 1930s, Polyamide-11 is unique. Its set of properties is ideal for coating applications. Consider Figure 2, which compares the properties of Polyamide-11 to Polyamide-6 and Polyamide-6/6, among the best known and commercially available of the polyamides. For Polyamide-11:

- the melting point (185°C) is low, enabling more convenient powder coating processing; and
- the equilibrium level of water absorption is low (~2% by weight), enabling good corrosion protection.

Further enhancing the utility of Polyamide-11 is an impact resistance of ~50 kJ/m², and resistance to a wide variety of chemicals. It is unique in another regard, too—it’s not petroleum-based. The fact that Polyamide-11 is derived from castor oil, a renewable resource, makes it a truly green product.

Resistance to Cavitation Erosion

Through experimental work according to ASTM G-32: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, an independent laboratory, KTA Tator, Inc., of Pittsburgh, PA, compared the cavitation erosion resistance of Polyamide-11 to that of powder coatings and metals commonly used in the water industry. Comparison of the tested coatings can be seen in Figure 3. Details are given elsewhere. (4)

As shown, Polyamide-11 powder coatings, compared with two commercial epoxy powder coatings, performed exceptionally. Optical data show the same (see Figure 4). For the Polyamide-11 powder coating, there is a small loss of gloss only, whereas for the epoxy powder coatings, there is erosion to the metal surface. On consideration, these results are not surprising. Crosslinked coatings, like epoxies, would not be expected to withstand the impact of cavitation-generated shock waves.

Figure 2. Comparison of polyamides

Figure 3. Comparison of coating performance showing loss of material as a function of cavitation exposure time. Greater material loss means greater cavitation erosion.
Comparison of coatings and metals is shown in Figure 5. Here, Polyamide-11 powder coatings also performed better than brass, bronze, ductile cast iron, carbon steel and stainless steel 316-L. As seen in Figure 4, optical data show the same (only steel products shown). Regarding loss (Figure 5), Polyamide-11 powder coatings perform about the same as Steel Alloy (CA-6-NM). Optical data, however, show that Steel Alloy (CA-6-NM) undergoes a visual change, whereas the Polyamide-11 powder coating undergoes a small loss of gloss only. Thus, Polyamide-11 powder coatings are regarded as better.

Summary

As demonstrated through independent laboratory testing, Polyamide-11 powder coatings offer better resistance to cavitation erosion than other coatings and metals used in the water industry—most notably stainless steels. Where cavitation erosion...
is a concern, Polyamide-11 powder coatings offer a great advantage, including outstanding performance with low-cost metals. Combined with their marked resistance to corrosion, abrasion/impact and chemicals, this enhances the already strong position of Polyamide-11 powder coatings in the water and fluid flow industries.

Acknowledgements

Philip L. Drooks of the Metropolitan Water District of Southern California (La Verne, CA) is acknowledged for highlighting the importance of the cavitation erosion phenomenon and advice on materials selection.

References

About the Authors

Dr. T. Page McAndrew is a Senior Research Scientist in the Technical Polymers R&D Group of Arkema Inc., in King of Prussia, PA. He has a B.S. in Chemistry from King’s College (PA) and a Ph.D. in Chemistry from the University of Pennsylvania, obtained under Nobel Laureate A.G. MacDiarmid. Prior to joining Arkema, McAndrew held research positions at IBM Corporation and Air Products and Chemicals, Inc. He is the author or co-author of 36 publications and holds 7 U.S. patents. E-mail him at: page.mcandrew@arkema-group.com

Jerry Petersheim is a Business Development Engineer with the Technical Polymers Group of Arkema Inc. He received an Associate Degree in Chemical Engineering from the Pennsylvania State University and began his career in 1979 as a plant design engineer with Union Carbide in South Charleston, WV. He continued his education and received a B.S. in Chemistry from Alvernia College in Reading, PA, while working as a physical and analytical technician for RILSAN Industrial (a former name of Arkema Inc.). Petersheim also has held positions as a powder coating Chemist, Technical Service Representative, Sales Representative, and Account Manager. He recently completed his Master’s Degree in Business. E-mail him at: jerry.petersheim@arkema-group.com

Dr. Marc Audenaert joined Arkema S.A., based in Paris, France, in 1985, and now serves as Manager of the organization’s Powder R&D Department. Audenaert received his Ph.D. in Solid-State Physics from the University of Brussels and worked as a post-doctoral fellow at the
New Beginnings Built on Years of Success

Effective October 1, 2004, the former ATOFINA organization changed its structure and set up two new companies: Arkema and Total Petrochemicals.

Arkema Inc. offers a line of Polyamide-11 powder coating products, Ribsan®, Fine Powders, with properties/colors tailored to specific applications. They are approved world-wide for use in the water industry (in U.S. - ANSI/AWWA C-224-01, NSF-61, UL-1091), where they already enjoy a 35-year record of success. The Polyamide-11 products examined in this article were Black 7450 AC FB and Blue 7174 MAC FB.

Arkema Inc. maintains a worldwide network of approved coaters to serve clients with coatings services. For more information on the company and the products and services referenced in this article, contact Jerry Petersheim at (215) 419-7633.

University of Montpellier (France) in the field of solid-state NMR. At Arkema, he worked for more than 10 years on the characterization of polymers at the CERDATO Research Center. E-mail him at: marc.audesneart@arkemagroup.com

Danny C.S. Foong is a Development Manager in the Technical Polymers Group of Arkema S.A. He has a B.S. in Chemical Engineering from National Taiwan University in Taipei. Over the past 12 years, he has been working in the development of polyamide and poly (vinylidene fluoride) resins and powders. Today, Foong focuses primarily on Polyamide-11 powder coatings for the water industry. E-mail him at: danny.foong-chen-shiong@arkemagroup.com

OK

What’s eating you?

If you are pumping aggressive compounds, the correct combination of materials is critical. seepex specializes in a wide range of coatings and exotic metals resistant to corrosion and abrasion. Call us for free sample discs of elastomers, metals, and plastics and satisfy yourself that seepex can get you the exact materials you need to make your pump run safely, reliably, and economically. ISO 9001:2000 certified

seepex
We deliver your success

seepex Inc. 511 Speedway Drive Enon, Ohio 45323 (937) 864-7150 Fax (937) 864-7157
sales@seepex.net www.seepex.com

Circle 114 on Reader Service Card